
2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 1/18

This document introduces service meshes and how they function at a high level. It de�nes
service meshes, explains their role and architecture, and describes their importance in
distributed enterprise application systems. It also discusses some service mesh attributes.
This guide is for system architects and platform developers that review, assess, and plan the
use of service meshes in their architecture.

What are the new problems in microservices architecture?

Companies are increasingly adopting microservices, containers, and Kubernetes. The need to
modernize, and the need to increase developer productivity, application agility, and scalability
drives this increase. Many organizations are also venturing into cloud computing and adopting
a distributed microservice architecture for both new and existing applications and services.
Monolithic applications (a single application providing multiple functions) are complex to build
and slow to release. While the architecture of microservices helps simplify creating individual
services, it leads to additional or increased complexities, like those in the following sections.

Security

In a monolithic application, all function-to-function calls are secure inside the monolith.
Consider how microservices authenticate, authorize, encrypt, and communicate. Also consider
the additional auditing tools needed to trace service-to-service communication.

Network resiliency

In distributed architectures, consider the effect of latency and the overall response time when
multiple services communicate to produce a response. Also consider fault tolerance. How
does a distributed architecture ensure that a service in one downstream service does not
cause cascading failure in other services?

Communication policy

Service meshes in a microservices
architecture

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 2/18

In distributed architectures, some services can become bottlenecks or dependencies for other
services. Network policies that manage quotas and rate limits for all services can ensure that a
rogue service making too many calls does not overload the services it calls. To effectively
control services, create policies that specify which services can and can't make calls.

Observability

When compared with monolithic applications, observability is more important in microservice-
based architectures. In monolithic applications, log �les are su�cient to identify the source of
an issue. In a microservices architecture, multiple services can span a single request. Latency,
errors, and failures can happen in any service within the architecture. Developers need logging,
network metrics, and distributed tracing and topology to investigate problems and pinpoint
their location.

Why are these problems more prominent for enterprises?

If one (or a few) applications are split into microservices, it makes security, network resiliency,
policy, and observability easier to address. However, enterprises might have dozens, hundreds,
or thousands of microservices. Therefore, any solution must scale. If not done correctly, the
complexity of applications and the amount of microservices creates a greater dependence
between those services.

What are service meshes?

A service mesh is a platform layer on top of the infrastructure layer that enables managed,
observable, and secure communication between individual services. This platform layer
enables companies or individuals to create robust enterprise applications, made up of many
microservices on a chosen infrastructure. Service meshes use consistent tools to factor out all
the common concerns of running a service, like monitoring, networking, and security. That
means service developers and operators can focus on creating and managing applications for
their users instead of worrying about implementing measures to address challenges for every
service.

Service meshes are transparent to the application. The service mesh monitors all tra�c
through a proxy. The proxy is deployed by a sidecar pattern

https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/#example-1-sidecar-containers

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 3/18

 (https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/#example-1-sidecar-
containers)

to the microservices. This pattern decouples application or business logic from network
functions, and enables developers to focus on the features that the business needs. Service
meshes also let operations teams and development teams to decouple their work from one
another.

Features and functionality

Service meshes provide speci�c functionality to manage and control communication
relationships between services. Some of this functionality is discussed in the following
subsections.

Multi-tenancy

The multi-tenancy deployment pattern isolates groups of microservices from each other when
a tenant exclusively uses those groups. A typical use case for multi-tenancy is to isolate the
services between two different departments within an organization or to isolate entire
organizations altogether. The goal is that each tenant has its own dedicated services. Those
services can't access the services of other tenants at all, or can only access other tenants'
services when authorized.

The simplest form of multi-tenancy is to have infrastructure dedicated to a single tenant. Each
tenant has its own network, compute, storage, and additional components like Kubernetes and
microservices, without sharing infrastructure. While this form of multi-tenancy is possible, its
infrastructure use is ine�cient in many situations. It's more e�cient to share infrastructure
among tenants and rely on service mesh con�guration and policies to separate them.

Service mesh multi-tenancy is based on one of two tenancy forms
 (https://istio.io/docs/ops/deployment/deployment-models/#tenancy-models): namespace tenancy and

cluster tenancy.

Namespace tenancy

The namespace tenancy form provides each tenant with a dedicated namespace within a
cluster. Because each cluster can support multiple tenants, Namespace tenancy maximizes
infrastructure sharing.

https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/#example-1-sidecar-containers
https://istio.io/docs/ops/deployment/deployment-models/#tenancy-models

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 4/18

To restrict communication between the services of different tenants, expose only a subset of
the services outside the namespace (using a sidecar con�guration) and use service-mesh-
authorization policies to control the exposed services. Con�gure each namespace individually
for the set of available services. Because access to each service is authorized, only allowed
tenants can access each other's services. While multi-mesh federation
 (https://istio.io/docs/ops/deployment/deployment-models/#multiple-meshes) supports this use case,

it's not necessary to create a multi-mesh federation.

A namespace can span one or more clusters. The tenancy is de�ned solely by the namespace
and is independent of the clusters that support the namespace. In fact, two different service
meshes can have the same namespace. An example of this concept is one service mesh
representing a staging tenant, and one service mesh representing a production tenant. Both
can have a customer namespace. Because this naming scheme is confusing, it's not ideal.

Cluster tenancy

The cluster tenancy form exclusively dedicates the entire cluster, including all namespaces, to
a tenant. A tenant can also have more than one cluster. Each cluster has its own mesh.

Cluster tenancy means separation on a cluster level; it's not truly multi-tenant in terms of
sharing resources between tenants. However, because it's mentioned in Istio tenancy model
documentation (https://istio.io/docs/ops/deployment/deployment-models/#tenancy-models), it's
included here.

Security

Security is important regardless of architecture type. Microservices have additional security
needs compared to other architectures. For example, authentication, authorization, and tra�c-
�ow control between microservices. The security features within service meshes address
these needs.

Traditional network security is based on a strong perimeter to prevent unauthorized access.
After users are inside the network perimeter, they are considered trusted actors and are
allowed to communicate without verifying their identity.

In 2010, Forrester popularized the concept of zero trust. In a zero trust environment, it's no
longer assumed that anything within a speci�c security perimeter is trusted. Instead, it's
assumed that the network is compromised and unaware of it. Everything is veri�ed. In this

https://istio.io/docs/ops/deployment/deployment-models/#multiple-meshes
https://istio.io/docs/ops/deployment/deployment-models/#tenancy-models

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 5/18

case, the only trusted perimeter is within the service itself. Anything else, even if within the
same network, is implicitly untrusted.

Before service mesh, achieving zero trust was di�cult. Trust required tooling to manage
certi�cates for services and workloads, as well as service authentication and authorization.
After implementing a service mesh, achieving zero trust is less complex. Service meshes
provide these authentication and authorization identities through a central certi�cate authority
that provides certi�cates for each service.

Service meshes use these identities to authenticate and authorize services inside and outside
of the mesh. The certi�cate authorities and the availability of certi�cates let developers
implement authorization policies that provide �ne-grained control over which services can
communicate with each other. it's also possible to granularly specify the paths and HTTP verbs
that are allowed for certain services.

Service meshes give platform developers the ability to enforce policies, like mutual TLS
 (https://istio.io/latest/docs/tasks/security/authentication/mtls-migration/), to ensure encrypted tra�c

between services and to help prevent person-in-the-middle
 (https://wikipedia.org/wiki/Man-in-the-middle_attack) attacks. After the service mesh is deployed,

it's responsible for encryption and decryption of all requests and responses.

Observability and analysis

Observability is a set of activities that include measuring, gathering, and analyzing multiple
signals from a system. Observing systems was less complex before microservice
architectures. Requests came to a single service and it collected the data.

In a distributed microservices architecture, the response data must be gathered from multiple
services to get the full response. As previously discussed, all tra�c to and from a service in the
mesh passes through a proxy. This proxy enables operators to gain greater visibility into
service interactions. Each proxy reports on its portion of the request to produce the same
comprehensive view that existed in monolithic applications. A mesh typically generates the
following types of telemetry to provide observability: metrics, distributed traces, and access
logs.

Metrics

A mesh produces metrics for all tra�c coming into the mesh, within the mesh, or leaving the
mesh. Examples of these metrics include error rates, number of requests per second, and

https://istio.io/latest/docs/tasks/security/authentication/mtls-migration/
https://wikipedia.org/wiki/Man-in-the-middle_attack

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 6/18

request response times. These metrics help developers understand service behavior in
aggregate.

The mesh can produce the following metrics, as described in the Istio documentation
 (https://istio.io/docs/concepts/observability/):

Proxy-level metrics: Sidecar proxies generate a large set of metrics about all inbound
and outbound proxy tra�c. These metrics include detailed statistics about the proxy's
administrative functions, like con�guration information and health information.

Service-level metrics: Service-level metrics cover the four golden signals of monitoring:
latency, tra�c, errors, and saturation.

Control plane metrics: Control plane metrics monitor the service mesh control plane
rather than the services within the mesh.

Distributed traces

A service mesh can generate distributed trace spans for each service within it. Use these
traces to follow a single request through the mesh across multiple services and proxies.

Access logs

A service mesh can generate a full access log that includes all the service calls, including the
source of the call and its destination which allows for auditability at the service level.

Compliance

Compliance means enforcing the policies and rules used to govern a system. These policies
and rules are either self-imposed or imposed by industry or government regulation.

One form of enforcement is monitoring and auditing workloads to determine whether there are
any policy or rule violations that compromise compliance. Another form of enforcement is
using formal implementations of policies and rules that ensure that they are in effect. In
practice, both are put into place: formal implementations for policies and rules, in addition to
real-time monitoring and auditing.

The following list provides a general compliance overview. Additional policies and rules might
apply depending on the industry or the workload.

https://istio.io/docs/concepts/observability/

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 7/18

Monitoring and auditing: Monitoring and auditing workloads helps to determine whether
there are any policy or rule violations within the system.

Security: All systems within a microservice architecture must be secure, authenticated,
and able to provide authorized access to all of their endpoints.

Redundancy: To avoid a single point of failure, redundancy requires deploying each
microservice in more than one location. With Istio, it's possible to check whether a
microservice is deployed more than once. Redundancy only requires a microservice to be
deployed more than once, it might be in the same zone. If deployed in the same zone, the
architecture does not provide high availability.

High availability: A high availability deployment continues to function during a zone
outage. That means the zone does not become a single point of failure. Each service and
each component must be deployed in at least two zones to ensure continuity. Aside from
the microservice functionality itself being able to react to a zone outage, the service
mesh con�guration can be used to automatically analyze complete redundancy in at
least two zones.

Disaster recovery: Disaster recovery is similar to high availability. The difference is that a
system deployed for disaster recovery continues to function during a single region
outage. Like with highly available systems, service mesh con�gurations can be
automatically analyzed to ensure they are appropriately deployed.

Partitioning (multi-tenancy): Microservices can be used to implement multi-tenant
systems that support several tenants at the same time. In this document, see Multi-
tenancy (#multi-tenancy) for a detailed discussion of namespace partitioning and cluster
partitioning. Analyzing the service mesh con�guration can help ensure it's properly
partitioned.

Runtime properties: Policies and rules focus on a static deployment or con�guration or
they can be runtime policies. For example, a runtime policy might enforce an upper
latency limit. In this case, the system interrupts invocations that take longer than the
de�ned latency period. Whatever the de�ned policy, it must be enforced at runtime. For
more information, see the resilience (#resilience) section later in this document.

The preceding list is a subset of the compliance policies and rules that an application or a
company must comply with and enforce.

There are some policies and rules that can't be enforced with a service mesh. For example,
data residency requirements are outside the scope of a service mesh. If user data must reside

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 8/18

in the same country as a user's speci�ed home location, a service mesh is insu�cient to
con�gure or to enforce this requirement. Another example is storing all data and their history
for a speci�c number of years. A service mesh can't implement and supervise that policy.

Tra�c control

A service mesh controls the �ow of tra�c between services, into the mesh, and to outside
services. Custom resources allow users to manage this tra�c. These resources vary
depending on the service mesh chosen. They enable users to create canary rollouts, create
blue/green rollouts, and create �ne-grained control over speci�c routes for services.

The service mesh maintains a service registry of all services in the mesh by name and by their
respective endpoints. It maintains the registry to manage the �ow of tra�c (for example,
Kubernetes Pod IP addresses). By using this service registry, and by running the proxies side-
by-side with the services, the mesh can direct tra�c to the appropriate endpoint.

Load balancing

In most microservices architectures, there are multiple instances of each service running (for
example, Pods in Kubernetes). Tra�c is load balanced across the instances. A service mesh
can control the load-balancing behavior of those services. Usually, the default behavior is
round-robin (https://wikipedia.org/wiki/Round-robin_DNS) across the instances of the service.
However, it can be random, weighted according to a speci�c percentage of tra�c, or directed
to the service with the least tra�c.

Source (caller) restriction

In general, much focus is placed on the microservices receiving invocations from clients. For
example, load balancing, abstraction into virtual services, or retry invocations. To ensure that
the only microservices that communicate are those that require the invocation, restrict the
callers of microservices. Microservices must avoid any accidental communication or
erroneous communication. When it can't be avoided, it must be identi�ed.

For example, in a banking application there is a debitCredit service that can add or subtract
amounts from a checking account. That service is only available to services in the area of
funds transfer. The goal is to prevent the invocation of debitCredit by non-funds-transfer
services.

https://wikipedia.org/wiki/Round-robin_DNS

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 9/18

There are several ways to enable correct service mesh communications. One way is to identify
callers by their identifying service name and list them individually to specify the permitted
callers for a service. Another way is to use labels as identi�ers instead of service names. In the
previous banking example, all services that belong to the group of funds transfer services
could be labeled fundsTransfer. The service mesh uses the label to specify which callers are
permitted to call a service.

Resilience

A service mesh can increase the invocation resilience of microservices deployed on
Kubernetes. There are two classes of resilience measures:

Increasing the reliability of microservice invocations

Intentionally creating invocation failures

Increasing the reliability of microservice invocations

The reliability of a microservice invocation increases if failures are abstracted from the caller. If
a failure occurs, the service mesh can use the following strategies to try to address it
transparently without returning a failure to the caller:

Timeout (https://istio.io/docs/concepts/tra�c-management/#timeouts)

Retry (https://istio.io/docs/concepts/tra�c-management/#retries)

Circuit breaking (https://istio.io/latest/docs/tasks/tra�c-management/circuit-breaking/)

Intentionally creating invocation failures

A service mesh provides resilience by specifying timeouts or retries. Applications can also
implement resiliency. For example, it's possible that an application must invoke three
microservices sequentially to process input and obtain a result. If one of these invocations
fails, the application can retry the sequence again to see if the invocations work on the second
attempt.

To test that an application functions properly, it's possible to inject intentional invocation faults
 (https://istio.io/docs/concepts/tra�c-management/#fault-injection) through a service mesh at

runtime. One type of fault is a delay. The invocation is intentionally delayed and that delay tests
the ability of the application to deal with a variation in latencies. Another type of fault is an

https://istio.io/docs/concepts/traffic-management/#timeouts
https://istio.io/docs/concepts/traffic-management/#retries
https://istio.io/latest/docs/tasks/traffic-management/circuit-breaking/
https://istio.io/docs/concepts/traffic-management/#fault-injection

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 10/18

abort. An abort interrupts the invocation. The application observes an invocation failure and
then decides how to deal with that failure.

These measures are applied at runtime to actual invocations in a production system.

Architecture

At a basic level, a service mesh consists of services and proxies running as sidecars to the
services. It also includes some authority that con�gures those proxies to combine the proxies
and services into a proper distributed system, including a data plane and a control plane. All
requests to or from a service pass through two proxies within the mesh: the proxy for the
calling service and the proxy for the receiving service.

This architecture abstracts all functions that are not related to the business logic away from
services and service developers. The data plane manages the proxies and services. The
control plane is the authority that provides policy and con�guration to the data plane.

The service mesh control plane enables the proxies to perform the following functions:

Service discovery

Service routing

Load balancing

Authentication and authorization

Observability

The control plane is responsible for the following:

Service registry: The control plane must have a list of available services and endpoints to
provide them to the proxies. The control plane compiles this registry by querying the
underlying infrastructure scheduling system, like Kubernetes, to get a list of all available
services.

Sidecar proxy con�guration: The con�guration for sidecar proxies includes policies and
mesh-wide con�gurations that the proxies need to be aware of to appropriately perform
their functions.

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 11/18

For a diagram of the services that interact with the control plane, see proxies running as
sidecars (https://hackernoon.com/service-mesh-with-envoy-101-e6b2131ee30b).

Design considerations

Although a service mesh can look like a perfect solution for many aspects of microservice
system design and system implementation, there are caveats. Some of these caveats are
described in the following sections.

Processing overhead

Invocations from one microservice to another are routed through a proxy and possibly through
a load balancer. In addition, the invocations are tracked, and possibly modi�ed, through
encryption. While encryption does not cause signi�cant overhead on an individual level, in
aggregate it adds to latency and to resource requirements. To determine whether the overhead
for a given use case is signi�cant, analyze it with performance and scalability measurements
 (https://istio.io/docs/ops/deployment/performance-and-scalability/).

Con�guration design complexity

Creating a service mesh con�guration is a design activity that must ensure that requirements
are properly implemented. It requires knowledge about the con�guration capabilities of service
meshes in general. Knowledge of how to create the correct con�gurations for speci�c
applications is also required. When service meshes are con�gured, that con�guration must
re�ect the system requirements.

Test con�guration validity

After a service mesh con�guration is in place, use tools like Istioctl Analyze
 (https://istio.io/docs/ops/diagnostic-tools/istioctl-analyze/) to validate the con�guration. Because

the con�guration could change as the application implementation progresses, it's important to
repeat the validation constantly as part of the CI/CD process. After you validate the
con�guration, test the service mesh con�guration to con�rm that the intent of the behavior
expressed in the con�guration matches the expected microservice invocation behavior. For
more information, see the Testing section (#testing).

https://hackernoon.com/service-mesh-with-envoy-101-e6b2131ee30b
https://istio.io/docs/ops/deployment/performance-and-scalability/
https://istio.io/docs/ops/diagnostic-tools/istioctl-analyze/

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 12/18

Verify the service mesh con�guration

The existence of a service mesh control plane does not automatically ensure system security
and reliability. A service mesh must be con�gured, and that con�guration must be properly
tested and veri�ed. Doing so makes it possible to avoid problems like undetected insecure
invocations.

Changes to microservices (like additions or updates) might change the communication
behavior of the mesh, but not so much that the con�guration considers it a change. To ensure
that all changes are properly covered by the service mesh con�guration, perform a service
mesh con�guration review for every change.

A service mesh does not cover all security aspects that require implementation in an
enterprise setting. A service mesh addresses all aspects around service communication; any
infrastructure security requirements, like �rewalls and network security, need to be addressed
separately.

Service mesh control plane updates

A service mesh is implemented as a system that might change over time. For example,
changes to address performance improvements, scalability improvements, additional features,
or bug �xes might be implemented. When updating the control plane of a service mesh, it's
important to regression test the existing con�guration against the updated system. Regression
tests should ensure that the new system version of the service mesh does not negatively alter
the service mesh behavior.

Testing

Testing ensures the proper setup and functioning of a service mesh. To perform
comprehensive testing, include the following checks:

General service mesh con�guration check

Service mesh con�guration check against microservice requirements

Service mesh control plan deployment version check

General service mesh con�guration check

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 13/18

Use the Istioctl Analyze tool to perform a general service mesh con�guration check. Use its
con�guration parameters
 (https://istio.io/docs/reference/commands/istioctl/#istioctl-experimental-analyze) to �ne-tune

behavior. Developers can �nd the current set of analyzers in the Istio GitHub repository
 (https://github.com/istio/istio/tree/release-1.5/galley/pkg/con�g/analysis/analyzers). When Istioctl
Analyzer detects an issue, it returns an error message
 (https://istio.io/docs/reference/con�g/analysis/) like IST0114:
PolicySpecifiesPortNameThatDoesntExist.

Service mesh con�guration check against microservice requirements

A service mesh manages and controls microservice communication. Testing helps to ensure
that the formal service mesh con�guration implements the requirements of the microservice.
Some example service mesh features include the following:

Communication: Which microservices can communicate, which can't?

Security: Is the communication con�gured as expected? For example, does it use HTTP
or HTTPS?

Dynamic behavior: Does the service mesh throttle communication enough to avoid
overwhelming one or more microservices?

A service mesh is con�gured through declarative con�guration �les. These �les are part of the
code repository. They contain speci�cations that address speci�c microservice use-case
requirements that are inherent to the microservice's implementation and logic. For example,
the speci�cations state which microservices can communicate and which can't. The
speci�cations also state how much throughput is possible and when it has to be throttled.

From a software engineering perspective, treat a service mesh like regular microservice
implementation code. Perform both positive and negative tests on it. A positive test asserts
that functionality or behavior is present. A negative test asserts that a speci�c functionality or
feature is absent. In the context of a service mesh con�guration, both tests are possible. Both
tests can prove whether a service mesh con�guration corresponds to the microservice
requirements. Tests can be unit tests and integration tests, depending on the particular use
cases.

To test communication, also use both positive and negative test cases. For example,
microservice MS1 calls microservice MS2, but not the other way around. Establish one test to
assert that MS1 can call MS2, and establish another test to assert that MS2 can't reach MS1.

https://istio.io/docs/reference/commands/istioctl/#istioctl-experimental-analyze
https://github.com/istio/istio/tree/release-1.5/galley/pkg/config/analysis/analyzers
https://istio.io/docs/reference/config/analysis/

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 14/18

One way to build the tests is to implement two mock microservices. Create one for MS1 and
one for MS2 such that both can invoke each other. Optionally, establish a test where both MS1
and MS2 can invoke the other without the service mesh being present. When the service mesh
is present, the invocation from MS1 to MS2 must work, while the invocation from MS2 to MS1
must fail.

It is a good practice to de�ne additional tests that account for resilience (#resilience). For
example, if fault injection is creating invocation delays, it's important to con�rm that the clients
can deal with those delayed invocations.

Many aspects of a microservice are covered by service meshes, like security, reliability, or
scalability. Because the overall system relies on their proper con�guration, it's important to
establish test cases with a high percentage of overall coverage. In some areas, like security,
the testing coverage might reach 100%.

Check the control plane deployment version

It's possible to install and to run two different versions of the service mesh control plane
 (https://istio.io/latest/docs/setup/upgrade/) at the same time. Testing must establish that the

current version of the control plane and the newer version of the control plane behave in the
same way. Alternatively, testing must establish that the behavior of the newer version is an
improvement. De�ning automated tests that check the control �ow plane behavior removes
the need for manual tests. For example, observing the behavior with monitoring tools and log
�le examination. Manually observing control �ow plane behavior means that one or more
people compare what is observable. They then assess whether the behavior of the current
version and the new version are the same.

In addition to observing the overall service mesh behavior, the speci�c unit and integration
tests (#service_mesh_con�guration_check_against_microservice_requirements) must behave in the
same way. If they don't, it means there is a service degradation to evaluate. This evaluation is
part of a regular CI/CD and testing practice. However, the process is important to application
con�guration changes and platform changes.

Only test a new control plane version when it's deployed in all clusters. Ideally, the unit and
integration tests run continuously as part of the CI/CD pipeline.

Use cases

https://istio.io/latest/docs/setup/upgrade/

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 15/18

There are certain use cases and architectures that lend themselves to service meshes. The
following �owchart represents a decision tree to determine whether deploying a service mesh
is a feasible solution.

As shown in the preceding decision tree, if services are running in multiple clouds—whether it's
on multiple cloud providers or an on-premises data center—then consider using a service
mesh. If services are running on a single cloud, consider the following non-exhaustive factors
when deciding whether to use a service mesh:

Running in multiple clusters: Service meshes enable application developers to abstract
away all the communication overhead from services and o�oad it to the mesh. If your
services are running in multiple clusters, consider a service mesh.

Service landscape and requirements: There is no magic number for the minimum
number of services that warrant a service mesh. Consider organizational requirements
for network functions. For example, observability, service level policy management, and

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 16/18

tra�c control. Also consider a team's ability and ease to instrument and add libraries to
services to meet those requirements. If there are �ve services that are hard to
instrument, that would be a reason to consider a service mesh. Conversely, if there are
100 services that are already instrumented to match organizational requirements, that
would be a reason to not implement a service mesh.

Policies and restrictions: Service meshes improve the ability to apply policies to an entire
mesh or to granular services. Therefore, if there are many policies or if there is a need to
have �ne-grained control with minimal additional work, consider a service mesh.

Robust rollout strategies: Service meshes can improve the implementation of robust
rollout strategies, such as blue/green and canary. If you need robust rollout strategies,
consider a service mesh.

Example service mesh: Istio

Istio is a service mesh implementation (https://istio.io/). Istio's architecture contains a data
plane and a control plane. The data plane consists of Envoy
 (https://www.envoyproxy.io/docs/envoy/latest/) proxies that control the communication between

microservices and also collect metrics. Incoming tra�c (called ingress), outgoing tra�c
(called egress), and tra�c between services (mesh tra�c). Each microservice instance
(container or VM) has a dedicated Envoy proxy.

The control plane is the management layer for the Envoy proxies. It manages the proxies so
that the correct invocation routing occurs. The istiod binary is the core of the control plane and
provides service discovery, con�guration, and certi�cate management.

For more information about the various control plane components, refer to Istio's architecture
page (https://istio.io/docs/ops/deployment/architecture/).

Istio supports the following deployment models
 (https://istio.io/docs/ops/deployment/deployment-models/):

single or multiple Kubernetes clusters

single or multiple networks

single or multiple control planes

single or multiple meshes

https://istio.io/
https://www.envoyproxy.io/docs/envoy/latest/
https://istio.io/docs/ops/deployment/architecture/
https://istio.io/docs/ops/deployment/deployment-models/

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 17/18

The preceding deployment options support various use cases. Istio users can select the best
option for their scenarios.

Istio is not the only commercially available service mesh. Linkerd (https://linkerd.io/2/overview/)

is also available. Anthos Service Mesh (/anthos/service-mesh) is Google Cloud's fully managed
service mesh. It gives developers an Anthos tested and supported distribution of Istio, letting
them create and deploy a service mesh on Google Cloud or on Anthos clusters on VMware
with full Google support.

What's next

Try Google Kubernetes Engine if you are not already familiar with it by creating a cluster
 (/kubernetes-engine/docs/how-to/creating-a-cluster).

Learn more about Anthos Service Mesh (/anthos/service-mesh), Google's fully managed
service mesh

Follow these tutorials for different deployment options for Istio on GKE:

Building a multi-cluster service mesh on GKE with shared control-plane, single-VPC
architecture
 (/solutions/building-multi-cluster-service-mesh-across-gke-clusters-using-istio-single-control-
plane-architecture-single-vpc)

Building a multi-cluster service mesh on GKE using replicated control-plane
architecture
 (/solutions/building-a-multi-cluster-service-mesh-on-gke-using-replicated-control-plane-
architecture)

Building a GKE multi-cluster service mesh with Istio: Shared control plane across
disparate networks
 (/solutions/building-gke-multi-cluster-service-mesh-with-istio-shared-control-plane-disparate-
networks)

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

https://linkerd.io/2/overview/
https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster
https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/solutions/building-multi-cluster-service-mesh-across-gke-clusters-using-istio-single-control-plane-architecture-single-vpc
https://cloud.google.com/solutions/building-a-multi-cluster-service-mesh-on-gke-using-replicated-control-plane-architecture
https://cloud.google.com/solutions/building-gke-multi-cluster-service-mesh-with-istio-shared-control-plane-disparate-networks
https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

2/17/2021 Service meshes in a microservices architecture | Solutions

https://cloud.google.com/solutions/service-meshes-in-microservices-architecture 18/18

Last updated 2021-02-17 UTC.

